Emotion Recognition from Speech using Discriminative Features

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion Recognition from Speech using Discriminative Features

Creating an accurate Speech Emotion Recognition (SER) system depends on extracting features relevant to that of emotions from speech. In this paper, the features that are extracted from the speech samples include Mel Frequency Cepstral Coefficients (MFCC), energy, pitch, spectral flux, spectral roll-off and spectral stationarity. In order to avoid the 'curse of dimensionality', statis...

متن کامل

Emotion recognition from speech using prosodic features

Emotion recognition, a key step of affective computing, is the process of decoding an embedded emotional message from human communication signals, e.g. visual, audio, and/or other physiological cues. It is well-known that speech is the main channel for human communication and thus vital in the signalling of emotion and semantic cues for the correct interpretation of contexts. In the verbal chan...

متن کامل

Speech emotion recognition using nonlinear dynamics features

Recent developments in man–machine interaction have motivated researchers to recognize human emotion from speech signals. In this study, we propose using nonlinear dynamics features (NLDs) for emotion recognition. NLDs are extracted from the geometrical properties of the reconstructed phase space of speech signals. The traditional prosodic and spectral features are also used as a benchmark. The...

متن کامل

Emotion Recognition from Speech Signals using Fractal Features

In early research the basic acoustic features were the primary choices for emotion recognition from speech. Most of the feature vectors were composed with the simple extracted pitch-related, intensity related, and duration related attributes, such as maximum, minimum, median, range and variability values. However, researchers are still debating what features influence the recognition of emotion...

متن کامل

Emotion Recognition from Speech using Teager based DSCC Features

Emotion recognition from speech has emerged as an important research area in the recent past. The purpose of speech emotion recognition system is to automatically classify speaker's utterances into seven emotional states including anger, boredom, disgust, fear, happiness, sadness and neutral. The speech samples are from Berlin emotional database and the features extracted from these uttera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications

سال: 2014

ISSN: 0975-8887

DOI: 10.5120/17775-8913